

校园无线网用户群体 移动行为聚集分析

周昌令 钱群 赵伊秋 尚群 北京大学 zclfly@pku

背景及相关研究

关联关系及稀疏链接区间表示

聚集关系度量(社交网络分析)

数据集及数据整理

结论与展望

背景及相关研究

• 无线网络管理的挑战

• 移动行为的相关研究

- 比较: 关联矩阵

无线网络管理的挑战

- 终端数量
 - 例:上个月

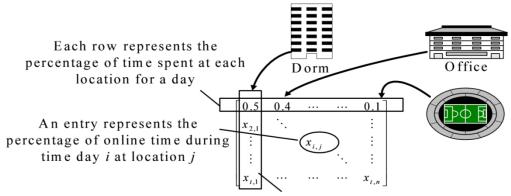
(2013/9/1 - 2013/9/30)

总MAC数:11.6万

- 移动特性
 - 区别于有线网络
 - 关注终端节点
 - vs 网络设备
 - 变化大,规律复杂

移动行为的相关研究

- 用户行为以及网络性能指标(Balachandran等[2])
 - 移动性与使用习惯
- 驻留位置 (home location) (KotzD等[3,4])
- 移动模型(郑宇、谢幸等, Ghosh等, Lin, M等 [5-7])
 - 轨迹变化,位置估计和移动轨迹预测
 - 个体或统计平均的用户移动性
- TRACE框架(Hsu W等[8-10])
 - 用户移动性带来的信息扩散能力
 - 使用关联矩阵 (association matrix)

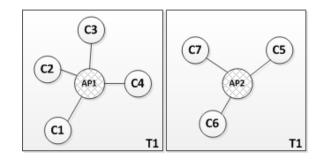


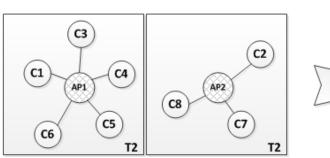
相关研究 - 关联矩阵

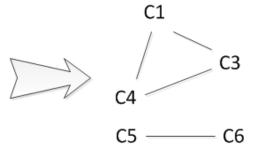
- 关联矩阵
 - 每天每用户

- 列: 节点位置

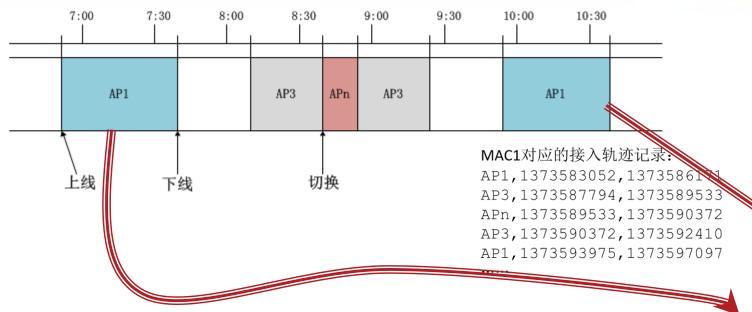
行:时间比例

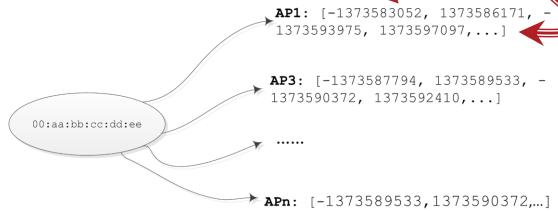



Each column corresponds to a location


- 不关心时长和顺序
 - 比例相同(10分钟:20分钟 vs 2小时:4小时)
 - 先后顺序不同(A->B vs B->A)
- 矩阵规模增长迅速,计算复杂

基于位置的关联关系




- 二部图投射(Bipartite network projection)
- 用户节点与用户节点之间的关联
 - 重合:同一时间段关联到相同位置
 - 重合的时长越多,关联度越大
 - 不同用户之间重合时长分别计算

移动轨迹记录

稀疏链接区间—SLI

稀疏链接区间—SLI

- 链接是稀疏的
 - 因为几乎所有的用户都只会接入很小比例的部分AP
- 每用户节点(MAC)对应一系列记录
 - 按接入AP进行分组,每组的时间按绝对值顺序排列
 - 区间中的起始时间用负数表示
- 计算区间的重合长度
 - 数值求和为区间长度
 - 只需计算用户关联的 A P 相关的其它MAC
 - 区间合并,按绝对值排序,连续的负数后面的区间为重合的区间

稀疏链接区间-举例

- 例:
 - 区间 A[-1, 3, -5, 8, -9, 10] 区间 B[-2, 4, -5, 7]
 - 合并后排序: [-1,-2, 3)4,-5,-5, 7)8,-9, 10]
 - 相似度计算
 - 对重合的元素求和,此例的长度为3
- 计算复杂度为 *O*(*n·k·m·*log *m*)
 - n为节点总数, k为节点平均接入的AP数量, m为节点的平均记录数量
 - 直接计算 O(n²m²)

相似度计算

$$sim_{i,j} = \frac{\sum_{ap} len(overlap(I(i), I(j)))}{\sum_{ap} len(I(i))}$$

- I(i),I(j)分别为2个MAC在不同AP上的接入时间 区间。 overlap()为计算重合区间, len()为计 算区间的长度
- 超过预设值的才认为存在强关联关系
- 此度量值是非对称的

聚集关系度量(社交网络分析)

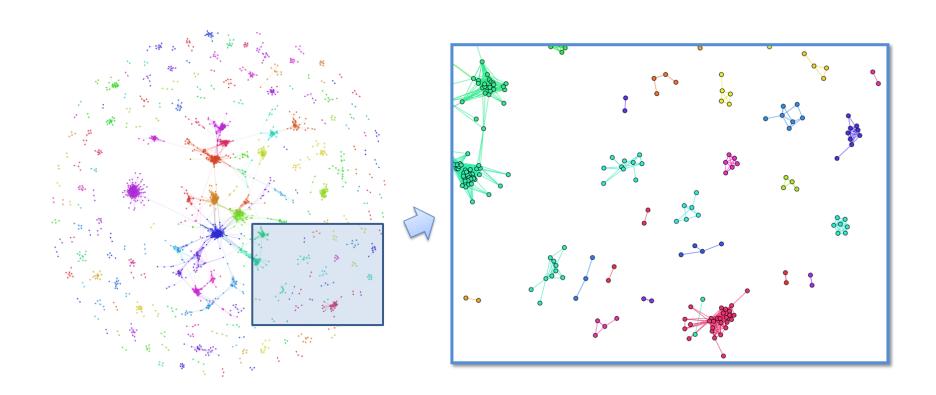
- 采用社交网络分析(SNA)的方法来理解 无线终端间关联的关系
 - 用户节点地址对应社交网络图中的节点,存在 关联关系的节点间具有边相连
 - 聚集系数、频度中心、间接中心、亲近中心
 - 社交网络图分析软件Gephi(https://gephi.org/)
 - 本文取阈值为:在线总时长24 h,关联度不小于50%

数据集

各数据集的统计信息

数据集	AP数量	区域数	MAC总数	强关联节点数	强关联边数	聚集系数	采集时间
北京大学PKU1	1 388	-	52 297	4 060	83 350	0.225	2012.6.1~2012.6.30
北京大学PKU2	1 134	-	37 776	2 072	29 601	0.218	2013.7.15~2013.7.31
南加州大学USC ^[19]	-	137	25 381	20 484	362 368	0.260	2006.1.25~2006.4.28

- PKU采用定时轮询方法,使用SNMP协议从无线控制器获取信息,每10 min取一次
- USC使用syslog日志



数据整理

- 在线总时长少于1天或出现天数少于2天的 节点
 - 不是典型的校园网用户
- 持续在线
 - 终端是一个常驻节点,没有移动行为。另一个原因是AP本身的缓存故障
- 只关心有移动特征的节点
 - 关联超过2个AP

数据集

弋表子图

信息和此终端用户的需求。

垂	-2
70	- 3
AX.	

规划的启示₽

多节点的聚集模式。

类别₽ 均衡分散型₽ 关系密集型₽ 中心散射型₽ 子图形状₽ 代表性的子图₽ 节点数很多,节点的平均度数不大,3 节点数比较多,节点平均度数大,两 节点数比较多,节点的度数不均 种不同的中心度量指标差异较大。节点 两节点间几乎都互连, 3 种中心度量 衡,有明显的频度中心节点。中 特征₽ 的聚集指数较小。 指标值几乎相同。节点的聚集指数较 心节点度数最大, 平均聚集指数 较小₽ 用户节点有明显的移动行为,节点通常 用户节点倾向于较少的移动,选择了 中心节点与其他节点行为模式有 出现在多个位置,没有驻留位置或各个 共同的驻留位置。终端用户通常是同 差别,中心节点在线时间长,并 聚集产生的原因₽ 节点驻留位置不同。没有固定的出现区 一个实验室的或在学生宿舍区邻近的 且有驻留位置。而其他节点移动 域, 通常出现在教学区4 位置↵ 性较大。常出现在图书馆和大的 自习室₽ 用户之间关联度相对较弱,位于间接中 用户关联度高,建议网管系统做节点故 频度中心用户是代表性用户,排 对无线网络管理和 心的节点往往对多个区域的网络都有体 障诊断时把相关节点也列出。规划时应 查故障和做规划应了解此节点的 验,无线规划时可以考虑参考它的意见。 有针对性地对此类用户的需求进行优

化↩

结论与展望

- 移动终端轨迹的稀疏链接区间(SLI)方法 能有效地分析用户节点的关联
- 用社交网络分析的方法来帮助分析校园无 线网用户的移动行为
- 结合真实运行数据,理解常见的聚集子图模式的特征和产生原因
- 可以应用到无线网络优化、信息推送、协议设计等领域

•谢谢!

